Action of wheat’s genetic systems in depend on way of aluminum entrance into plant
Pages: 8-15.
Lisitsyn E.M., DSc in biology, head of department,
Amunova O.A., associate researcher
North-East Agricultural Research Institute, Kirov, Russia
E-mail: edaphic@mail.ru
Estimation of influence of root and leaf input of aluminum into plants of spring soft wheat on activity of genetic systems of adaptivity, attraction, and micro-distribution of photosynthates were conducted under field conditions of Kirov region in 2014…2016. The estimation was done using graphs of orthogonal regression in co-ordinate systems “ear mass – straw mass” and “grain mass – chaff mass”. Changes in activity of the genetic systems differ quantitatively and qualitatively at different ways of aluminum ions’ impact. At varieties Vyatchanka, Magistral’naya 1, Svecha, Tumenskaya 80, and Estivum V313 top-dressing with 1.5 mM aluminum sulfate decreased activity of genetic system of micro-distribution. At varieties Bazhenka, Legenda, Sibirskaya 14, and Estivum 155 this treatment leads to re-distribution of photosynthates into economically useful part of ear. Activity of genetic systems of adaptivity and attraction was increased at varieties Magistral’naya 1, Svecha, Sibirskaya 14, and Estivum V313. Soil aluminum (211 mg/kg) increased effectiveness of action of genetic system of micro-distribution at varieties Altayskaya 80, Karabalykskaya 98, Legenda, Line 3691h, Estivum 155, and AC Taber. Varieties Altayskaya 80, Legenda, Tulajkovskaya 155, Tumenskaya 80, Estivum 155, and Nawra increased activity of genetic systems of adaptivity and attraction. These varieties could be used as sources for increasing of activity of the given genetic systems in breeding for Al-resistance. At varieties Legenda and Estivum 155 influence of soil aluminum leads to significant increase in activity of genetic systems of adaptivity and attraction, while top-dressing - decreased it. At varieties Svecha and Magistral’naya 1 there soil aluminum decreased activity of these systems, but top-dressing - increased. Only at variety Estivum 155 aluminum in both cases increased activity of genetic system of micro-distribution. All the rest varieties had opposite direction in change of activity of this system at different ways of stressor impact. Differences in varieties on level of aluminum resistance of root systems had not influence on activity of genetic system of micro-distribution at both ways of stressor’s impact. This fact indicates only weak genetic link between mechanisms of re-distribution of photosynthesis products within an ear of spring soft wheat and mechanisms of plant resistance against stress factors.
Keywords: aluminum resistance, adaptivity, attraction, micro-distribution, photoassimilates, stress
References
1. Maletskiy S.I., Roik N.V., Dragavtsev V.A. Tret’ya izmenchivost’, tipy nasledstvennosti i vosproizvodstva semyan u rasteniy. [Therd variability, types of heredity and reproduction of seeds and plants]. Sel’skokhozyaystvennaya biologiya. 2013. no. 5. pp. 3-29. doi: 10.15389/agrobiology.2013.5.3rus.
2. Dragavtsev V.A., Dragavtseva E.V. Mekhanizmy sdvigov dominirovaniya kolichestvennykh priznakov yarovoy pshenitsy v raznykh geograficheskikh tochkakh. [Mechanisms of shifts in dominance of quantitative traits of spring wheat in different geographical points]. Genetika. 2011. Vol. 47. no. 5. pp. 691-696.
3. Yakushev V.P., Mikhaylenko I.M., Dragavtsev V.A. Agrotekhnologicheskie i selektsionnye rezervy povysheniya urozhaev zernovykh kul’tur v Rossii. [Agro-technological and breeding reservoirs for increasing cereals’ yield in Russia]. Sel’skokhozyaystvennaya biologiyaa. 2015. Vol. 50. no. 5. pp. 550-560. doi: 10.15389/agrobiology.2015.5.550rus.
4. Lisitsyn E.M., Shchennikova I.N., Shupletsova O.N. Cultivation of barley on acid sod-podzolic soils of north-east of Europe. Barley: Production, Cultivation and Uses. New York: Nova Publ. 2011. рр. 49-92.
5. Tomioka R., Takenaka C., Maeshima M., Tezuka T., Kojima M., Sakakibara H. Stimulation of root growth induced by aluminum in Quercus serrata Thunb is related to activity of nitrate reductase and maintenance of IAA concentration in roots. Am. J. Plant Sci. 2012. Vol. 3. pp. 1619–1624. doi:10.4236/ajps.2012.311196.
6. Shchennikova I.N., Kokina L.P., Lisitsyn E.M. Izmenenie pigmentnogo kompleksa flagovykh list’ev yachmenya pod deystviem edaficheskogo stressa. [Changes in pigment complex of flag leaves of barley under action of edaphic stress]. Agrarnaya nauka Evro-Severo-Vostoka. 2010. no. 1(16). pp. 24-28.
7. Kopittke P.M., Moore K.L., Lombi E., Gianoncelli A., Ferguson B.J., Blamey P., Menzies N., Nicholson T., McKenna B., Wang P., Gresshoff P.M., Kourousias G., Webb R., Green K., Tollenaere A. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol. 2015. Vol. 167. pp. 1402–1411. doi: 10.1104/pp.114.253229.
8. Wang W., Zhao X.Q., Chen R.F., Dong X.Y., Lan P., Ma J.F., Shen R.F. Altered cell wall properties are responsible for ammonium-reduced aluminum accumulation in rice roots. Plant Cell Environ. 2014. Vol. 38. pp. 1382–1390. doi: 10.1111/pce.12490.
9. Nunes-Nesi A., Brito D.S., Inostroza-Blancheteau C., Fernie A.R., Araújo W.L. The complex role of mitochondrial metabolism in plant aluminum resistance. Trends in Plant Science. 2014. Vol. 19(6). pp.399-407. doi: 10.1016/j.tplants.2013.12.006.
10. Ma J.F., Shen R., Nagao S., Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant and Cell Physiology. 2004. Vol. 45.pp. 583–589. https://doi.org/10.1093/pcp/ pch060
11. Azmat R., Hasan S. Photochemistry of light harvesting pigments and some biochemical changes under aluminium stress. Pakistan Journal of Botany. 2008. Vol. 40 (2). pp. 779-784.
12. Dragavtsev V.A. Ekologo-geneticheskiy skrining genofonda i metody konstruirovaniya sortov sel’skokhozyaystvennykh kul’tur po urozhaynosti, us-toychivosti i kachestvu. Metodicheskie rekomendatsii (novye podkhody). [Ecological-and-genetic screening of genefund and methods to construct varieties of agricultural crops on productivity, resistance and quality. Methodical recommendations (New approaches)]. Saint-Petersburg: VIR, 1997. 49 p.
13. Lisitsyna I.I., Lisitsyn E.M. Sravnenie raboty geneticheskikh sistem u bokovykh i glavnykh stebley zernovykh kul’tur. [Comparison of action of genetic systems in lateral and basic stems of cereals]. Vestnik Rossiyskoy akademii sel’skokhozyaystvennykh nauk. 2008. no. 3. pp. 55-57.
14. Reyna-Llorens I., Corrales I., Poschenrieder C., Barcelo J., Cruz-Ortega R. Both aluminum and ABA induce the expression of an ABC-Like transporter gene (FeALS3) in the tolerant species Fagopyrum esculentum. Environ Exp Bot. 2014. Vol. 111. pp. 74-82. doi:10.1016/j.envexpbot.2014.11.005
15. Moriyama U., Tomioka R., Kojima M., Sakakibara H., Takenaka C. Aluminum effect on starch, soluble sugar, and phytohormone in roots of Quercus serrata Thunb. Seedlings. Trees. 2016. Vol. 30. pp. 405-413. doi:10.1007/s00468-015-1252-x.
16. Kopittke P.M. Role of phytohormones in aluminium rhizotoxicity. Plant Cell Environ. 2016.
Vol. 39(10). pp. 2319-2328. doi: 10.1111/pce.12786.
17. Schwartz S.H., Zeevaart J.A.D. Abscisic acid biosynthesis and metabolism. Plant hormones: biosynthesis, signal transduction and action. Dordrecht: Springer; 2010. pp. 137-155. doi: 10.1007/978-1-4020-2686-7_7.